НЕЕВКЛИДОВА ГЕОМЕТРИЯ

неевклидова геометрия неевкл`идова геом`етрия, неевкл`идовой геом`етрии


Смотреть больше слов в «Орфографическом словаре»

НЕЕВРОПЕЕЦ →← НЕДЮЖИННЫЙ

Смотреть что такое НЕЕВКЛИДОВА ГЕОМЕТРИЯ в других словарях:

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

см. Геометрия, Лобачевский и Пангеометрия.

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

Неевклидова геометрия — см. Геометрия, Лобачевский и Пангеометрия.

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

НЕЕВКЛИДОВА ГЕОМЕТРИЯгеометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов (1825) явилось значительным событием в истории мысли, ибо послужило первым шагом на пути к теории относительности.Второй постулат Евклида утверждает, что любой отрезок прямой можно неограниченно продолжить. Евклид, по-видимому, считал, что этот постулат содержит в себе и утверждение, что прямая имеет бесконечную длину. Однако в "эллиптической" геометрии любая прямая конечна и, подобно окружности, замкнута.Пятый постулат утверждает, что если прямая пересекает две данные прямые так, что два внутренних угла по одну сторону от нее в сумме меньше двух прямых углов, то эти две прямые, если продолжить их неограниченно, пересекутся с той стороны, где сумма этих углов меньше суммы двух прямых. Но в "гиперболической" геометрии может существовать прямая CB (рис. 1), перпендикулярная в точке С к заданной прямой r и пересекающая другую прямую s под острым углом в точке B, но, тем не менее бесконечные прямые r и s никогда не пересекутся.Из этих пересмотренных постулатов следовало, что сумма углов треугольника, равная 180? в евклидовой геометрии, больше 180? в эллиптической геометрии и меньше 180? в гиперболической геометрии.История. Первым неевклидовым геометром, вероятно, можно считать самого Евклида. Его нежелание использовать "несамоочевидный" пятый постулат следует хотя бы из того, что свои первые двадцать восемь предложений Евклид доказывает, не прибегая к этому постулату. С первого века до н.э. до 1820 математики пытались вывести пятый постулат из остальных, но преуспели лишь в замене его различными эквивалентными допущениями, такими, как "две параллельные линии всюду равно удалены друг от друга" или "любые три точки, не расположенные на одной прямой, принадлежат окружности". Ближе всех подошел к цели иезуит, логик и математик Дж.Саккери (1667-1733), который начал свои исследования с так называемого четырехугольника Саккери (рис. 2), т.е. с четырехугольника BCED, у которого BC = DE, а углы при вершинах C и E прямые. Заметив, что углы при вершинах B и D обязательно равны, Саккери рассмотрел поочередно три гипотезы: верхние углы четырехугольника тупые, прямые и острые. Он доказал, что любая из этих гипотез, если ее принять для какого-нибудь одного такого четырехугольника, остается в силе для всех таких четырехугольников. Саккери намеревался обосновать гипотезу о том, что верхние углы прямые, доказав, что любая другая гипотеза приводит к противоречию. Вскоре он отверг гипотезу о тупом угле (и тем самым лишил себя возможности открыть эллиптическую геометрию), поскольку, как и все геометры до 1854, рассматривал второй постулат как утверждение о том, что прямая имеет бесконечную длину, и отказываться от этого постулата он не хотел. Точно также Саккери в конце концов отверг и гипотезу об остром угле, но прежде, чем принять это ошибочное решение, он, сам того не ведая, открыл многие теоремы геометрии, получившей впоследствии название гиперболической.К.Гаусса (1777-1855) принято считать одним из величайших математиков всех времен. Он первым подошел к проблеме с современной точки зрения, согласно которой геометрию, отрицающую пятый постулат, надлежит развивать ради нее самой, не ожидая, что при этом возникнет какое-то противоречие. Письма Гаусса к друзьям говорят о том, что к 1816 он преодолел традиционный предрассудок относительно неизбежности противоречия и развил "антиевклидову" геометрию, удовлетворяющую гипотезе Саккери об остром угле. Но, опасаясь насмешек, он воздерживался от публикации этих идей и тем самым позволил разделить честь открытия гиперболической геометрии (примерно в 1825) венгру Я.Бойяи (1802-1860) и русскому Н.И.Лобачевскому (1793-1856). Бойяи опубликовал свою работу до того, как услышал о Лобачевском, а последний, судя по всему, так никогда и не узнал об исследованиях Бойяи.В 1854 Б.Риман (1826-1866) заметил, что из неограниченности пространства еще не следует его бесконечная протяженность. Смысл этого утверждения станет яснее, если представить, что в неограниченной, но конечной вселенной астроном в принципе мог бы увидеть в телескоп, обладающий достаточно высокой разрешающей способностью, свой собственный затылок (если отвлечься от небольшой детали, связанной с тем, что свет, отраженный от затылка, достиг бы глаза астронома через тысячи миллионов лет). В своем доказательстве того, что внешний угол при любой вершине треугольника больше внутреннего угла при любой из двух остальных вершин, Евклид неявно использовал бесконечную длину прямой. Из этой теоремы тотчас же следует теорема о том, что сумма любых двух углов треугольника меньше суммы двух прямых углов. Если отказаться от бесконечной длины прямой, то гипотеза Саккери о тупом угле становиться верной и из нее следует, что сумма углов треугольника больше суммы двух прямых. Такое положение дел было давно известно в сферической тригонометрии, где стороны треугольника являются дугами больших кругов. Риман внес эпохальный вклад, распространив представление о конечном, но неограниченном пространстве с двух на три и большее число измерений.Эллиптическая плоскость. Ф.Клейн (1849-1925) первым увидел, как избавить сферическую геометрию от одного из ее недостатков - того, что две лежащие в одной плоскости "прямые" (два больших круга на сфере) имеют не одну общую точку, а две (рис. 3,а). Так как для каждой точки существует одна-единственная точка-антипод (диаметрально противоположная точка), а для любой фигуры существует ее дубликат из точек-антиподов, мы можем, ничем не жертвуя, но многое приобретая, абстрактно отождествить обе точки такой пары, объединив их в одну. Таким образом можно изменить смысл термина "точка", условившись впредь называть "одной точкой" пару диаметрально противоположных точек. Иначе говоря, точки так называемой "эллиптической" плоскости представлены на единичной сфере парами точек-антиподов или диаметрами, соединяющими точки-антиподы. Вся эллиптическая прямая замкнута, как окружность, но, поскольку каждая из ее точек представлена двумя точками-антиподами на единичной сфере, полная длина эллиптической прямой равна половине длины окружности большого круга, т.е. ее полная длина равна ?.Такое представление с помощью диаметров и диаметральных плоскостей сферы (при котором диаметр, соединяющий северный и южный полюсы сферы, является "полюсом" экватора), показывает, что все свойства действительной проективной плоскости сохраняются и для эллиптической плоскости.Геометрия порядка. Один из подходов к построению гиперболической геометрии исходит из некоторых фундаментальных аксиом порядка, справедливых и в евклидовой, но не в эллиптической геометрии. Если считать "точки" исходными понятиями, то запись означает, что точка B лежит "между" точками A и C (это первичное отношение мы принимаем, не пытаясь его определить). Первые четыре аксиомы порядка утверждают, что 1) существует по крайней мере две точки; 2) если A и B - две различные точки, то существует по крайней мере одна точка C, для которой ; 3) эта точка C отлична от точки A и 4) порядок влечет за собой , но не . "Отрезок" AB, по определению, состоит из точек P, для которых , а "луч" A/B ("исходящий из A в другую сторону, чем B") - из точек Q, для которых . "Прямая" AB состоит из отрезка AB, точек A, B и двух лучей A/B, B/A. Пятая аксиома утверждает, что если C и D - различные точки на прямой AB, то A лежит на прямой CD (из этой же аксиомы следует, что прямые AB и CD совпадают). Шестая аксиома дает нам точку вне данной прямой, а седьмая, сформулированная М.Пашем (1843-1931), позволяет определить плоскость как множество всех точек, коллинеарных с парами точек на одной или двух сторонах данного треугольника.Абсолютная геометрия. Большая часть вклада Бойяи связана с теми разделами гиперболической геометрии, которые принадлежат и евклидовой геометрии. Его "абсолютная геометрия" может быть выведена из геометрии порядка, если к последней добавить еще одно фундаментальное отношение, а именно "конгруэнтность". Это отношение определяется пятью аксиомами типа "Если ABC и A?B ?C ? - два треугольника, таких, что BC ? B?C?, CA ? C?A?, AB ? A?B?, а D и D? - еще две точки, такие, что и и BD ? B?D?, то AD ? A?D?". Эти аксиомы служат основой теории длины и позволяют распространить отношение конгруэнтности с пар точек на углы. Определив обычным образом окружность, мы можем рассматривать первые четыре постулата Евклида как теоремы и доказать его первые двадцать восемь предложений, заменив слово "параллельные" на "не пересекающиеся". Однако необходимо тщательно избегать любого обращения к нашему обычному представлению о сумме углов треугольника; например, мы не можем более утверждать, что углы, опирающиеся на один и тот же сегмент окружности, равны, так как доказательство этого предложения зависело бы от суммы углов треугольника. С другой стороны, мы можем доказать, что три высоты остроугольного треугольника пересекаются в одной точке, построить теорию правильных многоугольников и правильных многогранников (с небольшими оговорками). Уточнив понятие параллельности (определив как параллельные лучи, которые просто не пересекаются), мы можем показать, что параллельность - отношение симметричное и транзитивное (т.е. если прямая r параллельна прямой s, то s параллельна r; если r параллельна s, а s параллельна t, то r параллельна t).Множество прямых, параллельных данному лучу, называется "пучком параллельных"; он содержит единственную прямую, проходящую через любую заданную точку. Следуя аналогии с обычным пучком (состоящим из всех прямых, проходящих через точку), мы можем считать, что пучок параллельных определяет "бесконечно удаленную точку", или, по терминологии Д.Гильберта (1862-1943), "конец". Вместо того, чтобы говорить, что два луча (или две прямые) параллельны или что они принадлежат некоторому пучку параллельных M, мы говорим, что два луча имеют общий конец M. Луч, проходящий через точку C и принадлежащий данному пучку параллельных, принято обозначать CM, как если бы это был отрезок; тот же символ CM можно использовать и для обозначения всей прямой. Если BM и CM - параллельные лучи, то фигура MCB называется "асимптотическим треугольником", поскольку она во многом ведет себя, как обычный треугольник. В частности, два асимптотических треугольника конгруэнтны, если у них имеется по конгруэнтной стороне и конгруэнтному углу.Гиперболическая плоскость. Из абсолютной геометрии Бойяи можно вывести евклидову геометрию, добавив евклидову (или аффинную) аксиому: через точку B, не лежащую на данной прямой r, можно провести не более одной прямой, параллельной данной. Гиперболическую геометрию можно вывести из абсолютной геометрии, добавив гиперболическую аксиому, повторяющую только что приведенную, но без отрицания "не" во втором случае. Таким образом, лучи BM и BN на рис. 4 могут быть оба параллельны r, а если M и N их концы, то r называется "прямой MN". Любая прямая, например t, являющаяся продолжением стороны угла ?NBM, образует с r пару "гиперпараллельных", т.е. пару прямых, которые не пересекаются и не параллельны. Две такие прямые имеют единственный общий перпендикуляр. Множество прямых, перпендикулярных данной прямой a, называются "пучком гиперпараллельных" с "осью" a.Отражение относительно BC показывает, что ?CBM и ?NBC - равные острые углы. Лобачевский назвал каждый из них "углом параллельности" П(a), где a - длина BC. Он показал, что функция П(a) монотонно убывает от ??? ? до 0, когда a возрастает от 0 до ?. Треугольник BMN естественно назвать "дважды асимптотическим треугольником". Два дважды асимптотических треугольника конгруэнтны, если имеют конгруэнтные углы. Если отрезок CB возрастает до тех пор, пока не превратится в луч CL, то BMN превращается в "трижды асимптотический треугольник" LMN, все три вершины которого являются концами (все три стороны такого треугольника бесконечны, а все три угла равны нулю). Все трижды асимптотические треугольники конгруэнтны.Одной из самых прекрасных страниц в литературе по неевклидовой геометрии со времен Лобачевского считается предложенное Г.Либманом доказательство того, что площадь треугольника остается конечной, когда две (или три) его стороны становятся бесконечными. Доказательство сводится к разбиению асимптотического треугольника на бесконечную последовательность конечных треугольников и перекладыванию их с соблюдением одного условия: все они должны умещаться внутри некоторого конечного пятиугольника. Метод Либмана восполняет один из двух недостающих шагов в предложенном Гауссом красивом доказательстве того, что площадь любого треугольника пропорциональна его "угловому дефекту" - величине, показывающей, насколько сумма углов треугольника меньше двух прямых. Аналогия с выражением (A + B + C) - ? для площади сферического треугольника (на единичной сфере) наводит на мысль о естественной единице измерения, при которой площадь треугольника ABC просто равна ? - (A + B + C). Используя эту единицу, Лобачевский выразил угол параллельности, соответствующий расстоянию x, формулойП(x) = 2arctg e-x.Кривые, ортогональные обычному пучку прямых, имеют вид концентрических окружностей; кривые, ортогональные пучку параллельных, имеют вид концентрических "орициклов". В действительности орицикл - это предельная форма окружности, центр которой уходит в бесконечность (так, что диаметры окружности становятся параллельными).Евклидовы модели неевклидовых геометрий. Ф.Вахтер (1792-1817) за несколько месяцев до безвременной кончины сообщил в письме к Гауссу о своем наблюдении: если пятый постулат Евклида ложен, то сфера, радиус которой стремиться к бесконечности, приближается к предельной поверхности, чья внутренняя геометрия совпадает с геометрией евклидовой плоскости. Тем самым Вахтер предвосхитил появление "орисферы", сыгравшей важную роль в работах Бойяи и Лобачевского. Эта поверхность получается при вращении орицикла вокруг любого из его диаметров. Кривые на орисфере, которые ведут себя, как евклидовы прямые, - орициклы, по которым орисферу пересекают ее диаметральные плоскости.А.Пуанкаре (1854-1912) открыл представление гиперболического пространства с помощью конформной модели, в которой геометрическое место концов имеет вид плоскости ? в евклидовом пространстве, а сферам с центрами в ? соответствуют плоскости гиперболического пространства. Заменив сферы полусферами, Пуанкаре получил возможность представить все гиперболическое пространство с помощью половины евклидова пространства, а именно всеми точками, лежащими по одну сторону от ?. Один пучок концентрических орисфер представлен плоскостями, параллельными ?; можно доказать, что евклидовы расстояния в такой плоскости пропорциональны соответствующим геодезическим на орисфере, что полностью согласуется с наблюдением Вахтера.Рассматривая сечение трехмерной модели Пуанкаре плоскостью, перпендикулярной ?, мы получим модель аналогичную модели Пуанкаре для гиперболической плоскости. В этой модели геометрическое место концов имеет вид евклидовой прямой. В другой модели геометрическое место концов имеет вид окружности ?, а прямые на гиперболической плоскости - дуг окружностей, ортогональных ?. Две параллельные дуге r, проходящие через точку B, - просто дуги, проходящие через точку B и касающиеся дуги r в ее концах, как на рис. 5.Такая модель называется "конформной" потому, что углы сохраняют свою величину, хотя расстояния неизбежно искажаются. Если пойти на искажение углов, то дуги можно заменить хордами, как на рис. 6. Эту более простую модель предложил в 1868 году Э.Бельтрами (1835-1900) для доказательства того, что гиперболическая геометрия так же логически непротиворечива, как и евклидова (хотя и Бойяи и Лобачевский были интуитивно убеждены, что их исследования никогда не приведут к двум противоречащим друг другу утверждениям, ни один из них не дожил до строгого доказательства непротиворечивости гиперболической геометрии). В модели Бельтрами множество прямых, проходящих через точку A, представлено обычным пучком параллельных или гиперпараллельных в зависимости от того, находится ли A внутри ?, на ? или вне ?. В последнем случае (см. нижнюю часть рис. 6) ось пучка гиперпараллельных есть "поляра" точки A, соединяющая точки касания двух касательных, проведенных из точки A. Иначе говоря, две перпендикулярные прямые гиперболической плоскости представлены двумя прямыми, "сопряженными" относительно ?. Такого рода идеи относятся к проективной геометрии; действительно, ? можно рассматривать как коническое сечение на действительной проективной плоскости; в этом случае мы приходим к модели А.Кэли (1821-1895) и Ф.Клейна. Это коническое сечение ?, геометрическое место концов, есть то, что Кэли назвал "абсолютом". (Преисполненный энтузиазмом, он сначала даже писал это слово с прописной буквы "А", но позднее перешел на строчную "а" во избежание упрека в непочтительности). Чтобы быть совершенно точным, следует отметить, что проективная плоскость, на которой работал Кэли, была не действительной, а комплексной: Кэли разрешал ? быть коническим сечением, не содержащим действительных точек, отчего геометрия становится не гиперболической, а эллиптической.... смотреть

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

По определению Евклида параллельные линии — прямые, лежащие в одной плоскости и никогда не встречающиеся, как бы далеко мы их ни продолжали. Но уже древнейшие комментаторы Евклида Посидоний (II век до нашей эры), Геминус (I век до нашей эры), Птолемей (II век нашей эры) — не считали пятый постулатум Евклида имеющим ту же очевидность, как другие по-стулатумы и аксиомы Евклида, и пытались или вывести его, как следствие других положений, или заменить определение параллельных, данное Евклидом, другим определением. Во второй половине XVII столетия Лейбниц также критически относился к основным положениям Евклида. Как известно, он хотел также построить чисто геометрической анализ, который непосредственно выражал бы свойства положения, подобно тому как алгебра выражает величину. Но только в первой половине XVIII века приходит мысль применить к вопросу о параллельных линиях и систематически провести в теории параллельных линий тот метод доказательства от противного, которым так часто пользовались греческие математики. Эта гениальная идея принадлежала Саккери. В сочинении, появившемся в год его смерти «Евклид, избавленный от всякого пятна», Саккери берет исходным пунктом четырехугольник, которого две противоположные стороны, перпендикулярные к основанию, равны между собой. В таком четырехугольнике углы, образуемые равными сторонами с стороною, противоположною основанию, равны, и доказательство этого свойства четырехугольника не зависит от постулатума Евклида. Если они прямые, то постулатум Евклида доказан, так как в этом случае сумма углов треугольника равна двум прямым. Но Саккери (и в этом состоит его оригинальная гениальная мысль) делает и две другие гипотезы — гипотезу острого и гипотезу тупого угла, выводит из этих гипотез вытекающие следствия и пытается доказать невозможность этих следствий, т. е. допустимость только одной гипотезы прямого угла. Ему легко удается доказать, что гипотеза тупого угла недопустима, так как приводит к противоречиям. Для того чтобы найти такое же противоречие в гипотезе острого угла, он выводит ряд замечательных теорем, которые потом были снова доказаны Лежандром. Таковы, например, теоремы, по которым если та или другая или третья гипотеза имеет место для одного четырехугольника, то она имеет место и для всякого другого. Через три года после ее появления, в 1766 году, Ламберт ставит ту же задачу, что и Саккери. Вместо четырехугольника с двумя прямыми углами и двумя равными сторонами Ламберт рассматривает четырехугольник с тремя прямыми углами и делает три гипотезы относительно четвертого угла. Его изложение имеет некоторые особенности сравнительно с изложением Саккери: он избегает прибегать к соображениям, основанным на непрерывности. Из того, что в гипотезах тупого и острого угла не существует подобия фигур, Ламберт выводит заключение о существовании абсолютной меры. В 1799 году гениальный математик Карл Гаусс пошел по тому пути, по которому до него шли Саккери и Ламберт, — по пути планомерного вывода всех следствий гипотезы острого угла. Но его размышления привели к сомнению в возможности доказать аксиому Евклида, и к 1816 году у математика созрело убеждение в невозможности такого доказательства. Высказанное публично мнение Гаусса о недоказуемости аксиомы Евклида не имело влияния и даже подверглось грубым нападкам. Это было одной из причин, почему он решился не публиковать своих исследований и мыслей по вопросу об основаниях, «боясь крика бео-тийцев» (письмо к Бесселю от 27 января 1829 года). Но он не прервал своих исследований и с величайшим интересом и сочувствием приветствовал те работы и мысли, которые совпадали с его исследованиями и взглядами. Как далеко он пошел по этому пути, показывает его письмо к Вольфгангу Болиаи от 6 марта 1832 года, в котором Гаусс говорит, что между 1797 и 1802 годами он нашел те результаты, к которым пришел Иоганн Болиаи. Например, чисто геометрическое доказательство теоремы, что в неевклидовой геометрии разность суммы углов треугольника от 180 градусов пропорциональна площади треугольника. Вольфганг Болиаи, друг школьных лет Гаусса, проявлял большой интерес к теории параллельных линий. Этот необычайный интерес, по свидетельству его письма к сыну в 1820 году, отравил ему все радости жизни, сделал его мучеником стремления освободить геометрию от пятна, «удалить облако, затемняющее красоту девы-истины». Но в то время как усилия почти всей жизни отца были направлены к доказательству 5-го постулатума, и ему не удалось достигнуть цели, его талантливый сын явился одним из творцов неевклидовой геометрии. Иоганн Болиаи родился в 1802 году в Клаузенбурге. Уже в 1807 году отец с восторгом и гордостью пишет Гауссу о необыкновенных математических способностях мальчика, который к тринадцати годам уже изучил планиметрию, стереометрию, тригонометрию, конические сечения, а в 14 лет уже решал с легкостью задачи дифференциального и интегрального исчисления. Вольфгангу не удалось послать сына учиться в Геттингене у «математического колосса», и в 1818 году Иоганн поступил в Венскую инженерную академию, где уделялось большое внимание высшей математике. В 1823 году он кончил курс в академии и, как военный инженер, был послан в крепость Теметвар. Вполне естественно, что обладавший необыкновенными математическими способностями Иоганн еще почти мальчиком решил испытать свои силы на решении того вопроса, над которым мучился отец, но про который отец же говорил ему, что решивший его достоин алмаза величиною в земной шар. В 1820 году Иоганн сообщает отцу, что он уже нашел путь к доказательству аксиомы, и тогда-то отец пишет ему горячее письмо, предостерегающее его от занятия теориею параллельных линий. В зимнюю ночь 1823 года он нашел то основное соотношение между длиною перпендикуляра, опущенного из точки на прямую, и углом, который составляет с этим перпендикуляром ассимптота (параллельная линия Лобачевского), которое является ключом к неевклидовой тригонометрии. В восторге от своего открытия, которое, казалось ему, открывало путь к доказательству XI аксиомы, он пишет 3 ноября из Теметвара отцу: «Я создал новый, другой мир из ничего. Все, что посылал до сих пор, есть только карточный домик в сравнении с воздвигаемою теперь башнею». В 1829 году Вольфганг закончил большое математическое сочинение, над которым трудился около двадцати лет. Как приложение к этой книге, было напечатано и бессмертное сочинение Иоганна Болиаи. Конечно, Болиаи не подозревали, что в это же самое время в далекой Казани Лобачевский печатал свою первую работу «О началах геометрии» (1829 год). Николай Иванович Лобачевский (1792–1856) родился в Макарьевском уезде Нижегородской губернии. Отец его занимал место уездного архитектора и принадлежал к числу мелких чиновников, получавших скудное содержание. Бедность, окружавшая его в первые дни жизни, перешла в нищету, когда в 1797 году умер отец и двадцатипятилетняя мать осталась одна с детьми без всяких средств. В 1802 году она привезла троих сыновей в Казань и определила их в Казанскую гимназию, где очень быстро заметили феноменальные способности ее среднего сына. Когда в 1804 году старший класс Казанской гимназии был преобразован в университет, Лобачевский был включен в число студентов по естественно-научному отделению. Учился юноша блестяще. Лобачевский получил прекрасное образование. Лекции по астрономии читал профессор Литрофф. Лекции по математике он слушал у профессора Бартельса, воспитанника такого крупного ученого, как Карл Фридрих Гаусс. Уже в 1811 году Лобачевский получил степень магистра, и его оставили в университете для подготовки к профессорскому званию. В 1814 году Лобачевский получил звание адъюнкта чистой математики, а в 1816 году был сделан профессором. С 1819 года Лобачевский преподавал астрономию. Административная деятельность ученого началась с 1820 года, когда он был избран деканом. Несмотря на изнурительную практическую деятельность, не оставлявшую ни минуты отдыха, Лобачевский никогда не прекращал своих научных занятий и во время своего ректорства напечатал в «Ученых записках Казанского университета» лучшие свои сочинения. Если Иоганн Болиаи начал заниматься теорией параллельных линий под влиянием своего отца, то Лобачевский мог начать заниматься ею только потому, что интерес к этой теории особенно оживился в конце XVIII и начале XIX столетия. В двадцатипятилетие, предшествующее появлению первой работы Лобачевского, не проходило и года, в которой не появилось бы одно или несколько сочинений по теории параллельных линий. Известно до 30 сочинений, напечатанных только на немецком и французском языках с 1813 по 1827 год. Работы Лежандра возбудили интерес к теории параллельных линий и в среде русских математиков. Первый академик из русских, заслуживший своими печатными трудами почетное место в истории русского математического преподавания, СЕ. Гурьев в наиболее важном из своих сочинений «Опыт о усовершении элементов геометрии», напечатанном в 1798 году, обратил особое внимание на теорию параллельных линий и на доказательства, данные Лежандром. Критикуя эти доказательства, Гурьев предлагает и свое собственное. Основываясь на утверждении, что при определенных условиях прямые, которые кажутся нам параллельными, могут пересекаться, Лобачевский пришел к выводу о возможности создания новой, непротиворечивой геометрии. Поскольку ее существование было невозможно представить в реальном мире, ученый назвал ее «воображаемой геометрией». Но к этой мысли и он, как и И. Болиаи, пришел не сразу. Лекции 1815–1817 годов, учебник геометрии 1823 года и не дошедшая до нас «Exposition succincte des principes de la geometrie», прочтенная в заседании физико-математического отделения 12 февраля 1826 года, — таковы три этапа мысли Лобачевского в области теории параллельных линий. В лекциях он дает три различных способа для ее обоснования; в учебнике 1823 года он заявляет, что все до сих пор данные доказательства не заслуживают быть почтены в полном смысле математическими, и, наконец, через три года он дает уже ту систему построения геометрии на положении, отличном от постулатума Евклида, которая обессмертила его имя. «Exposition» не дошло до нас. Первое печатное сочинение Лобачевского, которое он называет извлечением из «Exposition», печаталось в «Казанском вестнике» в 1829–1830 годах. Эта дата устанавливает приоритет опубликования открытия Лобачевского сравнительно с И. Болиаи, так как «Appendix» последнего был напечатан в 1831 году, а вышел из печати только в 1832 году. Как показывает заглавие «Exposition», оно имело своим предметом не только точную теорию параллельных линий, но посвящено было вместе с тем вопросу о началах геометрии. Хотя и И. Болиаи, и Лобачевский за это открытие были избраны членами Ганноверской академии наук, права гражданства получила в Западной Европе именно геометрия Лобачевского. В 1837 году труды Лобачевского печатаются на французском языке. В 1840 году он издал на немецком языке свою теорию параллельных, заслужившую признание великого Гаусса. В России же Лобачевский не видел оценки своих научных трудов. Очевидно, исследования Лобачевского находились за пределами понимания его современников. Одни игнорировали его, другие встречали его труды грубыми насмешками и даже бранью. В то время как наш другой высокоталантливый математик Остроградский пользовался заслуженной известностью, никто не знал Лобачевского; к нему и сам Остроградский относился то насмешливо, то враждебно. Совершенно правильно или, вернее, основательно один геометр назвал геометрию Лобачевского звездной геометрией. О бесконечных же расстояниях можно составить себе понятие, если вспомнить, что существуют звезды, от которых свет доходит до Земли тысячи лет. Итак, геометрия Лобачевского включает в себя геометрию Евклида не как частный, а как особый случай. В этом смысле первую можно назвать обобщением геометрии нам известной. Теперь возникает вопрос, принадлежит ли Лобачевскому изобретение четвертого измерения? Нисколько. Геометрия четырех и многих измерений создана была немецким математиком, учеником Гаусса, Риманом. Изучение свойств пространств в общем виде составляет теперь неевклидову геометрию, или геометрию Лобачевского. Пространство Лобачевского есть пространство трех измерений, отличающееся от нашего тем, что в нем не имеет места постулат Евклида. Свойства этого пространства в настоящее время уясняются при допущении четвертого измерения. Но этот шаг принадлежит уже последователям Лобачевского. Естественно возникает вопрос, где же находится такое пространство. Ответ на него был дан крупнейшим физиком XX века Альбертом Эйнштейном. Основываясь на работах Лобачевского и постулатах Римана, он создал теорию относительности, подтвердившую искривленность нашего пространства. В соответствии с этой теорией любая материальная масса искривляет окружающее ее пространство. Теория Эйнштейна была многократно подтверждена астрономическими наблюдениями, в результате которых стало ясно, что геометрия Лобачевского является одним из фундаментальных представлений об окружающей нас Вселенной.... смотреть

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

1) Орфографическая запись слова: неевклидова геометрия2) Ударение в слове: неевкл`идова геом`етрия3) Деление слова на слоги (перенос слова): неевклидов... смотреть

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

Ударение в слове: неевкл`идова геом`етрияУдарение падает на буквы: и,еБезударные гласные в слове: неевкл`идова геом`етрия

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

Начальная форма - Неевклидова геометрия, единственное число, женский род, именительный падеж, неодушевленное

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

неевкл'идова геом'етрия, неевкл'идовой геом'етрии

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

неэўклідава геаметрыя Гдз по геометрии 7 класс. Атанасян Л.С.

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

• neeuklidovská geometrie

T: 155